首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20853篇
  免费   2540篇
  国内免费   1093篇
工业技术   24486篇
  2024年   53篇
  2023年   303篇
  2022年   707篇
  2021年   741篇
  2020年   881篇
  2019年   757篇
  2018年   629篇
  2017年   900篇
  2016年   989篇
  2015年   907篇
  2014年   1309篇
  2013年   1064篇
  2012年   1385篇
  2011年   1764篇
  2010年   1225篇
  2009年   1263篇
  2008年   1229篇
  2007年   1466篇
  2006年   1156篇
  2005年   955篇
  2004年   821篇
  2003年   727篇
  2002年   579篇
  2001年   510篇
  2000年   437篇
  1999年   340篇
  1998年   261篇
  1997年   189篇
  1996年   187篇
  1995年   154篇
  1994年   113篇
  1993年   89篇
  1992年   56篇
  1991年   55篇
  1990年   37篇
  1989年   54篇
  1988年   39篇
  1987年   28篇
  1986年   23篇
  1985年   9篇
  1984年   13篇
  1983年   17篇
  1982年   13篇
  1981年   8篇
  1980年   11篇
  1979年   5篇
  1977年   3篇
  1963年   3篇
  1962年   2篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 954 毫秒
1.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
2.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
3.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
4.
This paper presents the stability improvement results of hybrid doubly fed induction generator (DFIG)-based and permanent magnet generator (PMG)-based offshore wind farms (OWFs) using a static synchronous series compensator (SSSC). An adaptive-network-based fuzzy inference system (ANFIS) controller of the proposed SSSC is designed to render adequate damping characteristics to the studied system. A frequency-domain approach based on a linearized system model using eigenvalue technique analysis is performed. A time-domain scheme based on a nonlinear system model subject to a three-phase short circuit fault at infinite bus with variations in the signal transmission delays has also been investigated to compare the damping of the studied system in cases of with and without controller. The simulation results with MATLAB/SIMULINK toolbox have been presented. It can be concluded from the simulation results that the proposed SSSC joined with the designed ANFIS damping controller can offer adequate damping performance to the studied hybrid DFIG-based and PMG-based OWFs under severe disturbance.  相似文献   
5.
The evaluation of cell's weatherability is of practical interest. To further improve the soluble lead flow battery's weatherability, physiochemical properties of electrolytes containing fluoborate, perchlorate, methanesulfonate and trifluoromethanesulfonate are investigated from ?60 to 50 °C. Activities of CF3SO3H and HClO4 are poor in trifluoromethanesulfonate and perchlorate solutions due to common anion effect. The solubility of lead salt can be improved by increasing temperature, but worsened by increasing acid's content. With the temperature increasing, the conductivity is enhanced, and the viscosity is lowered for four solutions. The same results have been found by increasing acid's content except for CF3SO3H. The high energy efficiency can be achieved for cells over ?40–0 °C using fluoborate and perchlorate solutions, 73.2% at ?40 °C and 78.1% at ?30 °C respectively. Over the temperature range of 20–50 °C, the cells with methanesulfonate and trifluoromethanesulfonate solutions have good performance, 77.4% and 73.7% at 50 °C respectively.  相似文献   
6.
《Advanced Powder Technology》2020,31(10):4187-4196
Manganese oxide catalysts have been synthesized from the used batteries via hydrometallurgical method and effect of hydrometallurgical parameters such as the effect of acid type (H2SO4, HNO3, HCl), acid concentration (0.5, 1, 1.5, 2 %v/v) and powder to acid ratio (1/50, 1/60, 1/70, 1/80) were in detail investigated. The physico-chemical properties of as-prepared catalysts were characterized by FT-IR, XRD, FESEM, EDX, BET, TEM, and TPR-H2 analysis. The activity of as-prepared catalysts were investigated towards the oxidation of benzene, toluene, and xylene (BTX) in a plasma-catalytic process. The results show that benzene and toluene conversion were almost constant in the range of 97–98% in case of various acid types, acid concentrations and solid to liquid ratios. However, the xylene conversion were varied in case of different hydrometallurgical factors. The highest xylene conversion was obtained in the presence of MnS0.5–60, which was prepared using H2SO4 with concentration of 0.5%v/v and solid to liquid ratio of 1/60. The effect of the input voltage and BTX flow rate on the BTX conversion was also investigated using MnS0.5–60 catalyst in detail.  相似文献   
7.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
8.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
9.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
10.
《Ceramics International》2020,46(9):12921-12927
The further development of clean energy requires the use of more stable and reliable energy storage system. In addition to lithium ion battery power supplies, sodium ion batteries also have prospects for application and development thanks to the low cost and abundant resource. NaTi2(PO4)3 has attracted much attention due to its three-dimensional channels for sodium ion transfer. In order to meliorate sodium storage properties of NaTi2(PO4)3 electrode, a facile strategy of Sn substitution at Ti sites was employed, and a series of electrodes were successfully synthesized through sol-gel route. The electrochemical performances of Sn substituted composites are significantly improved compared with bare NaTi2(PO4)3/C. And it was found that NaSn0.2Ti1.8(PO4)3 (NTP/C-Sn-2) delivers the largest capacity, and it also demonstrates the outstanding cycling performances. NTP/C-Sn-2 has discharge capacity of 131.1 mAh g−1 at 4 A g−1 in rate test and 121.4 mAh g−1 at 1 A g−1 after 1000 cycles in cycling test. The experimental results show that NaTi2(PO4)3/C with Sn substitution with proper content exhibits the great potential in anode for sodium ion batteries, and can further provide reference for next generation electrode materials and battery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号